Startups and companies develop quantum computers based on ion traps

27. October 2022

  • eleQtron, NXP Semiconductors Germany, Parity Quantum Computing Germany, QUDORA Technologies and Universal Quantum Deutschland are set to build prototype quantum computers within the next four years.
  • Ion trap systems are suitable for universal arithmetic operations.
  • Five sub-projects with different areas of focus.
  • The contracts amount to a total of 208.5 million euros.

Charged atoms cannot escape from an ion trap, as they are confined by an electromagnetic field. A laser, radio waves or microwaves can then change the state of the charged atoms (ions) in a targeted way, so that they become qubits, the building blocks of quantum computers. The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) has now awarded contracts for the advancement of ion trap technology. Prototype quantum computers will be created within four years as part of the DLR Quantum Computing Initiative.

“DLR is awarding contracts for five projects as part of its Quantum Computing Initiative, with the aim of creating qubits based on ion traps. This technology is considered highly promising and will be explored through targeted research. This takes us one step closer to a programmable, fault-tolerant quantum computer,” says Prof Dr. Anke Kaysser-Pyzalla, Chair of the DLR Executive Board. “Through the close cooperation of business and science, synergies are created that strengthen the quantum computing ecosystem and thus also provide start-ups with new opportunities.”

Prof Dr. Anke Kaysser-Pyzalla, Chair of the DLR Executive Board

The contracts amount to a total of 208.5 million euros. The gradual development of the systems will take place in several phases. “By the end of the projects, we will have quantum computers based on ion trap technology, with at least 50 qubits. At the same time, we are building modular systems that can be scaled up to thousands of qubits,” says Robert Axmann, Head of the DLR Quantum Computing Initiative. “The academic and economic environment at our innovation centres makes them ideal for continued development.”

Robert Axmann, Head of the DLR Quantum Computing Initiative

In the future, companies and their employees will be able to make use of offices, laboratories and a clean room in the DLR Innovation Centre in Hamburg. Here and in the DLR Innovation Centre in Ulm, the companies will also benefit from the close proximity to the DLR institutes and working groups and from working together on the challenges of quantum computing.

Development work at the DLR Innovation Centre in Hamburg

In a preliminary project, a consortium made up of NXP Semiconductors Germany (Hamburg), eleQtron (Siegen) and Parity Quantum Computing Germany (Munich) will provide a 10-qubit demonstration model, scheduled to start operation in late 2023. Users will be able to use this quantum computer to gain experience with ion trap systems and advance their development.

Two projects involve building prototype quantum computers with at least 50 fully functional qubits on a chip. Universal Quantum Deutschland (Düsseldorf) and the consortium of Qudora Technologies (Braunschweig) and NXP Semiconductors Germany (Hamburg) are each developing their own systems. The chip is scalable, which means that the number of qubits and computing power can be increased. Error susceptibility is considered to be one of the greatest challenges in quantum computing, so one area of focus is ensuring that the chip can correct faults.

In two other projects, modular, scalable quantum computers are being developed on the basis of ion traps. This involves networking several chips to form a universal quantum computer architecture. The special thing about this is that each module is its own small quantum processor with 10 qubits each. This structure will later grow to comprise many chips with thousands of qubits. Universal Quantum Deutschland (Düsseldorf) and NXP Semiconductors Germany / eleQtron / Parity Quantum Computing Germany are developing these modular quantum computer prototypes on behalf of DLR.

Ion trap qubits have a relatively long coherence time

“Ion trap systems allow universal arithmetic operations. They are not dedicated to solving specific tasks,” explains Karla Loida, Project Manager for the Quantum Computing Initiative. “Quantum computers based on ion traps have a number of advantages: the qubits are comparatively stable and offer superlative gate properties – a prerequisite for building high-quality quantum computers. Integration on microchips and innovative chip designs mean that scalability is now within reach.”

Dr. Karla Loida, Hardware lead DLR QCI

The technologies required for construction have now reached maturity. Laser systems can be used to provide the necessary cooling and targeted manipulation of qubits. Integration on microchips has also proven successful.

The prototype quantum computers developed as part of the projects will be used in research and development at DLR and accessed via a network.


eleQtron

eleQtron was founded in 2020. It is a spin-off from the chair of quantum optics at the University of Siegen. eleQtron develops, produces, operates and markets computing time on ion trap-based quantum computers. The quantum computer manufacturer successively builds more powerful quantum computers and connects them to the cloud. The technology works without laser light for quantum logic operations.


NXP Semiconductors Germany

NXP is one of the world’s leading semiconductor companies. With around 900 employees, the activities at its Hamburg site focus primarily on research, development, testing and marketing for several business units. NXP can build on experience and expertise of more than 60 years. The most important NXP competence centres in Hamburg are secure solutions for autonomous driving, cybersecurity, Industry 4.0, and the latest one, Quantum Computing.


Parity Quantum Computing Germany

ParityQC focuses on the development of blueprints and operating systems for quantum computers. ParityQC works with hardware partners worldwide to jointly build quantum computers for applications ranging from general-purpose, error-corrected quantum computing to solving optimisation problems on NISQ devices. ParityQC is developing the architecture, algorithms and an operating system for DLR.